18世紀末,人們發現身價高貴的金剛石竟然是碳的一種同素異形體,從此,制備人造金剛石就成為了許多科學家的光榮與夢想。 一個世紀以后,石墨 —— 碳的另一種單質形式被發現了,人們便嘗試模擬自然過程,讓石墨在超高溫高壓的環境下轉變成金剛石。為了縮短反應時間,需要2000℃高溫和5. 人造金剛石 5萬個大氣壓的特殊條件。 1955年,美國通用電氣公司專門制造了高溫高壓靜電設備,得到世界上第一批工業用人造金剛石小晶體,從而開創了工業規模生產人造金剛石磨料的先河,現在他們的年產量在20噸左右;不久,杜邦公司發明了爆炸法,利用瞬時爆炸產生的高壓和急劇升溫,也獲得了幾毫米大小的人造金剛石。 金剛石薄膜的性能稍遜于金剛石顆粒,在密度和硬度上都要低一些。即便如此,它的耐磨性也是數一數二,僅5微米厚的薄膜,壽命也比硬質合金鋼長10倍以上。我們知道,唱片的唱針在微小的接觸面上要經受極大的壓力,同時要求極長的耐磨壽命,只要在針尖上沉積上一層金剛石薄膜,它就可以輕松上陣了。如果在塑料、玻璃的外面用金剛石薄膜做耐磨涂層,可以大大擴展其用途,開發性能優越又經濟的產品。 更重要的是,薄膜的出現使金石的應用突破了只能作為切削工具的樊籬,使其優異的熱、電、聲、光性能得以充分發揮。目前,金剛石薄膜已應用在半導體電子裝置、光學聲學裝置、壓力加工和切削加工工具等方面,其發展速度驚人,在高科技領域更加誘人。 用人工方法使非金剛石結構的碳轉變為金剛石結構的碳,并且通過成核和生長形成單晶和多晶金剛石,或把細粒金剛石在高壓高溫下燒結成多晶金剛石。這是高壓研究目前在生產上得到應用的一個重要實例。 從熱力學觀點出發,決定石墨等非金剛石結構的碳質原料能否轉變成金剛石 人造金剛石產品的相變條件是后者的自由能必須小于前者。這種相變過程是在高壓、高溫或者還有其他組分參與的條件下進行的。一定的壓力、溫度和組元濃度等可以使系統的內能發生變化,從而使價電子可處能級的統計權重發生相應的變化。這就可能出現電子轉移和組成新的鍵合狀態的電子結構,即發生了相變。如果系統中能量變化有利于在固體中發生這種電子結構的變化,則高壓高溫相變發生在固態,否則就可能發生在熔態或汽態。在熔體中發生這種變化的條件是,鍵合特征的價電子分布的統計權重相應降低,遠程有序的作用趨于消失,原子配位數發生變化;而電子處于激發態的統計權重趨于增大,近程有序作用相應增強。氣體中發生這種變化的條件是,單質原子間或化合物的鍵合分子間的電子能級趨于消失,所有的電子轉移到單原子或分子能級上去,這樣,電子處于激發態的統計權重更為增大。因此,人造金剛石可以在固態,也可在熔態和汽態條件下進行,這取決于壓力、溫度和組元濃度等因素引起系統內能的變化情況。從動力學觀點出發,還要求石墨等碳質原料轉變成金剛石時具有適當的轉變速率。在金剛石成核率和生長速率同時處于極大值時的相變速率最大。 自18世紀證實了金剛石是由純碳組成的以后,就開始了對人造金剛石的研究,只是在20世紀50年代通過高壓研究和高壓實驗技術的進展,才獲得真正的成功和迅速的發展。目前人造金剛石的具體方法多達十幾種。按所用技術的特點可歸納為靜壓、動壓和低壓等三種方法。按金剛石的形成特點可歸納為直接、熔媒和外延等三類方法。 |